Заголовок:
Комментарий:
Готово, можно копировать.
СКЛАДУ ЗНО — математика
Вариант № 1230
1.  
i

На діаграмі по­ка­за­но кількість по­купців під час про­ве­ден­ня акції у ма­га­зині. В який день кількість по­купців то­ва­ру за акцією скла­ла менше 30% від кількості всіх по­купців у цей день?

А) понеділок
Б) вівто­рок
В) се­ре­да
Г) чет­вер
Д) п'ят­ни­ця
2.  
i

На одній чаші врівно­ва­же­них ваг ле­жать 3 яб­лу­ка та 1 груша, на іншій — 2 яб­лу­ка, 2 груші та гирка вагою 20 г. Яка вага од­но­го яб­лу­ка (у гра­мах), якщо всі фрук­ти разом ва­жать 780 г? Вва­жай­те, що всі яб­лу­ка од­на­кові за вагою та всі груші од­на­кові за вагою.

А) 95
Б) 105
В) 100
Г) 125
Д) 115
3.  
i

Дано дві пра­вильні чо­ти­ри­кутні піраміди. Об єм першої піраміди дорівнює 16. У другої піраміди ви­со­та в 2 рази більша, а сто­ро­на ос­но­ви в 1,5 рази більша, ніж у першої. Знайдіть об’єм другої піраміди.

А) 78
Б) 32
В) 64
Г) 80
Д) 72
4.  
i

Укажіть корінь рівнян­ня 1 минус 5x=0.

А) 5
Б)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
В)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
Г) 4
Д) 0
5.  
i

На колі з цен­тром О вибра­но точки А та В (див. ри­су­нок). Визна­чте гра­дус­ну міру кута АОВ, якщо до­в­жи­на дуги \stackrel\smileAB ста­но­вить  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби до­в­жи­ни цього кола.

А) 30°
Б) 45°
В) 60°
Г) 75°
Д) 90°
6.  
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка х пра­вая круг­лая скоб­ка , визна­че­ної на проміжку [−4; 6]. Укажіть найбільшв зна­чен­ня функції f на цьому проміжку.

А) −4
Б) 3
В) 4
Г) 5
Д) 6
7.  
i

Спростіть вираз 2 левая круг­лая скоб­ка x плюс 5y пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 4y минус 7x пра­вая круг­лая скоб­ка .

А) 9x плюс y
Б) 9x плюс 14y
В)  минус 5x плюс 6y
Г) 9x плюс 6y
Д) 16x плюс 2y
8.  
i

По­тужність постійного стру­му (у Вт) об­чис­люється за фор­му­лою P = I 2 R , де I - сила стру­му (в ам­пе­рах), R - опір (в омах). Ви­ко­ри­сто­ву­ю­чи цю фор­му­лу, знайдіть опір R (в омах), якщо по­тужність ста­но­вить 150 Вт, а сила стру­му дорівнює 5 ам­пе­рам.

А) 4
Б) 30
В) 2
Г) 6
Д) 15
9.  
i

Спростіть вираз  дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 5 конец дроби минус дробь: чис­ли­тель: 2x минус 5, зна­ме­на­тель: x левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка конец дроби .

А)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби
Б)  минус дробь: чис­ли­тель: x плюс 5, зна­ме­на­тель: x левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка конец дроби
В)  дробь: чис­ли­тель: 4, зна­ме­на­тель: x минус 5 конец дроби
Г)  дробь: чис­ли­тель: 10 минус x, зна­ме­на­тель: x левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка конец дроби
Д)  дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби
10.  
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Якщо дуга кола ста­но­вить 80°, то впи­са­ний кут, що спирається на цю дугу кола, дорівнює 40°.

II. Цен­тром кола, впи­са­но­го в три­кут­ник, є точка пе­ре­ти­ну се­ре­дин­них пер­пен­ди­ку­лярів до його сторін.

III. Се­ре­динні пер­пен­ди­ку­ля­ри до сторін три­кут­ни­ка пе­ре­ти­на­ють­ся в центрі опи­са­но­го кола.

А) Тільки I
Б) Тільки II
В) Тільки III
Г) I та II
Д) II та III
Е) I та III
11.  
i

Розв’яжіть си­сте­му рівнянь

 си­сте­ма вы­ра­же­ний 6 левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка плюс 10y=3,2x=y плюс 4. конец си­сте­мы .

Для одер­жа­но­го розв’язку  левая круг­лая скоб­ка x_0; y_0 пра­вая круг­лая скоб­ка укажіть суму x_0 плюс y_0.

А) −2,5
Б) −3,5
В) 3,5
Г) 6,5
Д) −1,5
12.  
i

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 2 до 3, левая круг­лая скоб­ка x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка dx .

А)  дробь: чис­ли­тель: 10, зна­ме­на­тель: 3 конец дроби
Б)  дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби
В) 16
Г)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
Д) 5
13.  
i

Розв’яжіть си­сте­му нерівно­стей:  си­сте­ма вы­ра­же­ний 2x в квад­ра­те минус 7x плюс 5 мень­ше или равно 0,2 минус x боль­ше 0. конец си­сте­мы .

А)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 1 пра­вая квад­рат­ная скоб­ка
Б)  левая круг­лая скоб­ка 2; 2,5 пра­вая квад­рат­ная скоб­ка
В)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2,5 пра­вая квад­рат­ная скоб­ка
Г)  левая квад­рат­ная скоб­ка 1; 2 пра­вая круг­лая скоб­ка
Д)  левая квад­рат­ная скоб­ка 1; 2,5 пра­вая квад­рат­ная скоб­ка
14.  
i

Знайдіть зна­чен­ня ви­ра­зу 8 синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

А) 2
Б) 1
В) 3
Г) −2
Д) −1
15.  
i

Площа бічної по­верхні циліндра дорівнює 24π, а до­в­жи­на кола його ос­но­ви — 4π. Визна­чте ви­со­ту цього циліндра.

А) 2
Б) 3
В) 4
Г) 6
Д) 8

У ко­роб­ку у формі пря­мо­кут­но­го па­ра­ле­лепіпеда щільно укла­де­но у 2 ряди10 шма­точків крей­ди (див. лівий рис.). Кож­ний шма­то­чок має форму циліндра ви­со­тою 10 см і діамет­ром ос­но­ви 15 мм (див. пра­вий ри­су­нок). Визна­чте площу плівки, якою в один шар щільно з усіх боків без на­кла­дань об­гор­ну­то цю ко­роб­ку. Місцями з’єднан­ня плівки та тов­щи­ною стінок ко­роб­ки знех­туй­те.

А) 225 см2
Б) 255 см2
В) 450 см2
Г) 600 см2
Д) 75 см2
17.  
i

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = тан­генс x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x плюс 1

Вла­стивість функції

А функція не­пар­на

Б об­ластю зна­чень функції є мно­жи­на  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

В об­ластю визна­чен­ня функції є проміжок  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3
18.  
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

1\left| минус 1,6| плюс 2

2 дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 24 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из 3 конец дроби

32 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби

Промiжок

А левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая круг­лая скоб­ка

Б левая квад­рат­ная скоб­ка 0;1 пра­вая круг­лая скоб­ка

В левая квад­рат­ная скоб­ка 1;2 пра­вая круг­лая скоб­ка

Г левая квад­рат­ная скоб­ка 2;3 пра­вая круг­лая скоб­ка

Д левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3
19.  
i

Ос­но­ви ВС й AD рівнобічної тра­пеції ABCD дорівню­ють 7 см і 25 см відповідно. Діаго­наль тра­пеції BD пер­пен­ди­ку­ляр­на до бічної сто­ро­ни АВ. До кож­но­го по­чат­ку ре­чен­ня (1—4) доберіть його закінчен­ня (А—Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

 

По­ча­ток ре­чен­ня

1.    Се­ред­ня лінія тра­пеції дорівнює

2.    Про­екція сто­ро­ни AB на пряму AD дорівнює

3.    Ви­со­та тра­пеції дорівнює

4.    Сто­ро­на AB тра­пеції дорівнює

Закінчен­ня ре­чен­ня

А    9 см

Б    12 см

В    15 см

Г    16 см

Д    18 см

А
Б
В
Г
Д

1

2

3

4
20.  
i

Уста­новіть відповідність між вимірами циліндра (1−3) та пра­виль­ним щодо нього твер­джен­ням (А−Д).

Виміри циліндра

1.     радіус ос­но­ви дорівнює 6, ви­со­та — 4

2.    радіус ос­но­ви дорівнює 2, ви­со­та — 6

3.    радіус ос­но­ви дорівнює 4, ви­со­та — 6

Твер­джен­ня щодо циліндра

А    циліндр утво­ре­но обер­тан­ням пря­мо­кут­ни­ка зі сто­ро­на­ми 4 та 6 нав­ко­ло більшої сто­ро­ни

Б    площа ос­но­ви циліндра дорівнює 12π

В    твірна циліндра дорівнює 4

Г    площа бічної по­верхні циліндра дорівнює 24π

Д    об'єм цилiндра дорівнює 48π

А
Б
В
Г
Д

1

2

3
21.  
i

У дитя­чо­му ша­хо­во­му клубі функціону­ють лише мо­лод­ша й стар­ша групи. Стар­шу групу відвідують 27 дітей. Відвідувачі мо­лод­шої групи ста­нов­лять 46% від за­галь­ної кількості відвідувачів обох груп ша­хо­во­го клубу.

 

1. Визна­чте кiлькiсть дiтей у мо­лодшiй групi.

2. Скільки дітей потрібно до­дат­ко­во на­бра­ти в мо­лод­шу групу за умови незмінності кількості дітей стар­шої групи, щоб відно­шен­ня кількості відвідувачів мо­лод­шої групи до кількості відвідувачів стар­шої групи ста­но­ви­ло 4 : З?

22.  
i

Діаго­наль BD пря­мо­кут­ної тра­пеції ABCD є бісек­три­сою кута ADC й утво­рює з ос­но­вою AD кут 30° (див. ри­су­нок). Визна­чте до­в­жи­ну се­ред­ньої лінії тра­пеції ABDC (у см), якщо BD= 20 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см.

23.  
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве за­да­ны точки А (1; 3; −8) и B (6; −5; –10).

1.  Най­ди­те ко­ор­ди­на­ты век­то­ра \overrightarrowAB. В от­ве­те на­пи­ши­те их сумму.

2.  Най­ди­те мо­дуль век­то­ра \overrightarrowAB. В ответ за­пи­ши­те квад­рат най­ден­но­го мо­ду­ля.

24.  
i

Ви­пи­са­но кілька послідов­них членів гео­мет­рич­ної про­гресії: …; 150; x; 6; 1,2; …

1.  Най­ди­те зна­ме­на­тель дан­ной гео­мет­ри­че­ской про­грес­сии.

2.  Знайдіть член про­гресії, по­зна­че­ний літерою x.

25.  
i

На ви­бо­рах пре­зи­ден­та школи ба­ло­ту­ють­ся три кан­ди­да­ти: На­та­ля, Ми­ко­ла й Антон. За ре­зуль­та­та­ми опи­ту­ван­ня ймовірність того, що пе­ре­мо­же Антон, дорівнює ймовірності того, що пе­ре­мо­же Ми­ко­ла, й вдвічі менша за ймовірність того, що пе­ре­мо­же На­та­ля. Якою за ре­зуль­та­та­ми опи­ту­ван­ня є ймовірність того, що пре­зи­ден­том школи обе­руть Ми­ко­лу?

26.  
i

Фаб­ри­ка ви­го­тов­ляє ком­плек­ти пла­сти­ко­вих меблів, кожен з яких скла­дається зі стола, ди­ва­на та двох крісел. На ви­го­тов­лен­ня ди­ва­на вит­ра­чається на 1 кг пла­сти­ку більше, ніж на ви­го­тов­лен­ня стола, та на 3 кг більше, ніж на ви­го­тов­лен­ня од­но­го крісла. Відомо, що на ви­го­тов­лен­ня 10 крісел вит­ра­чається пла­сти­ку стільки ж, як і на ви­го­тов­лен­ня 2 столів та 4 диванів разом. Скільки кіло­грамів пла­сти­ку вит­ра­чається на ви­го­тов­лен­ня од­но­го ком­плек­ту пла­сти­ко­вих меблів?

27.  
i

Об­числіть  левая круг­лая скоб­ка 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 16, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка умно­жить на 7 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 25, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 21 пра­вая круг­лая скоб­ка 100 пра­вая круг­лая скоб­ка .

28.  
i

Розв'яжіть рівнян­ня 3x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 12x в квад­ра­те =15. У відповідь запишіть до­бу­ток усіх його дійсних коренів.

29.  
i

На кур­сах з вив­чен­ня іно­зем­них мов як бонус за­про­по­но­ва­но два без­ко­штовні за­нят­тя, одне з яких про­во­ди­ти­муть ди­станційно, а друге — в ауди­торії. Тему кож­но­го з цих двох за­нять слу­хач може виб­ра­ти са­мостійно з 10 за­про­по­но­ва­них. Скільки всьо­го існує спо­собів ви­бо­ру форм про­ве­ден­ня цих двох за­нять та різних тем до них?

x y
−2
−1
 минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби

За­да­но функцію y= дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: x в квад­ра­те конец дроби .

1. Для на­ве­де­них у таб­лиці зна­чень ар­гу­ментів х визна­чте відповідні їм зна­чен­ня у (див. таб­ли­цю).

2. Знайдіть похідну f' функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: x в квад­ра­те конец дроби . Визна­чте ну­льові функції f' .

3. Напишіть рівнян­ня графіку функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , па­ра­лель­ної осі абс­цис.

4. Визна­чте проміжки зрос­тан­ня та спа­дан­ня, точки екс­тре­му­му функції f .

5. Знайдіть найбільше та най­мен­ше зна­чен­ня функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка на відрізку левая квад­рат­ная скоб­ка минус 5; минус 1 пра­вая квад­рат­ная скоб­ка .

6. По­бу­дуй­те графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка на відрізку левая квад­рат­ная скоб­ка минус 5; минус 1 пра­вая квад­рат­ная скоб­ка .

31.  
i

Бічні ребра пра­виль­ної три­кут­ної піраміди дорівню­ють 5. Плос­кий кут при вер­шині дорівнює γ.

1.  Зоб­разіть на ма­люн­ку цю піраміду та кут γ.

2.  Знайдіть площу ос­но­ви.

3.  Знайдіть об'єм піраміди.

32.  
i

Відповідно до умови за­в­дан­ня 31 (№ 3492) бічні ребра пра­виль­ної три­кут­ної піраміди дорівню­ють 6. Плос­кий кут при вер­шині дорівнює γ.

а) Зоб­разіть на ма­люн­ку цю піраміду і по­бу­дуй­те лінійний кут дво­гран­но­го кута при основі піраміди.

б) Знайдіть цей кут.

34.  
i

За­да­но си­сте­му рівнянь

 си­сте­ма вы­ра­же­ний 4 в сте­пе­ни x минус 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =a плюс 3, ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка боль­ше или равно a плюс 4, конец си­сте­мы .

де x – змінна, a – па­ра­метр.

1. Розв'яжіть рівнян­ня 4 в сте­пе­ни x минус 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =3.

2. Визна­чте всі зна­чен­ня па­ра­мет­ра, а при кож­но­му з яких си­сте­ма має рівно два рішення.