Заголовок:
Комментарий:
Готово, можно копировать.
СКЛАДУ ЗНО — математика
Вариант № 1474
1.  
i

На ри­сун­ку зоб­ра­же­но графік за­леж­ності шляху S (у км), прой­де­но­го групою ту­ристів, від часу t (у год). Яке з на­ве­де­них твер­джень є пра­виль­ним?

А) Зу­пин­ка три­ва­ла 4 го­ди­ни.
Б) До зу­пин­ки ту­ри­сти прой­шли 20 км.
В) Після зу­пин­ки ту­ри­сти прой­шли більшу відстань, ніж до зу­пин­ки.
Г) Ту­ри­сти зро­би­ли зу­пин­ку через 4 го­ди­ни після по­чат­ку руху.
2.  
i

Відстань між Києвом та Сток­голь­мом дорівнює 1265 км. Округліть її до со­тень кіло­метрів.

А) 1000 км
Б) 1200 км
В) 126 км
Г) 1270 км
Д) 1300 км
3.  
i

Знайдіть об’єм піраміди, зоб­ра­же­ної на ма­люн­ку. Її ос­но­вою є ба­га­то­кут­ник, сусідні сто­ро­ни якого пер­пен­ди­ку­лярні, а одне з бічних ребер пер­пен­ди­ку­ляр­но пло­щині ос­но­ви і 3.

А) 3
Б) 27
В) 9
Г) 18
Д) 4
4.  
i

Знайдіть корінь рівнян­ня 8 левая круг­лая скоб­ка 6 плюс x пра­вая круг­лая скоб­ка плюс 2x = 8.

А) −4
Б) −2
В) −1
Г) −3
Д) −5
5.  
i

Прямі a і b пе­ре­ти­на­ють­ся, утво­рю­ють чо­ти­ри кути. Відомо, що сума трьох кутів дорівнює 220°. Знайдіть гра­дус­ну міру мен­шо­го кута.

А) 140°
Б) 110°
В) 15°
Г) 20°
Д) 40°
6.  
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка х пра­вая круг­лая скоб­ка , визна­че­ної на проміжку [−4; 6]. Укажіть найбільшв зна­чен­ня функції f на цьому проміжку.

А) −4
Б) 3
В) 4
Г) 5
Д) 6
7.  
i

Спростіть вираз a в сте­пе­ни 4 умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: a в сте­пе­ни 6 конец ар­гу­мен­та , де a боль­ше или равно 0.

А) a12
Б) a10
В) a8
Г) a7
Д) a5
8.  
i

Площу три­кут­ни­ка S левая круг­лая скоб­ка в м в квад­ра­те пра­вая круг­лая скоб­ка можна об­чис­ли­ти за фор­му­лою S= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ah , де a – сто­ро­на три­кут­ни­ка, h – ви­со­та, про­ве­де­на до цієї сто­ро­ни (в мет­рах). Ко­ри­сту­ю­чись цією фор­му­лою, знайдіть сто­ро­ну а якщо площа три­кут­ни­ка дорівнює 28 м в квад­ра­те , А ви­со­та h дорівнює 14 м.

А) 14
Б) 7
В) 12
Г) 4
Д) 18
9.  
i

Укажіть проміжок, якому на­ле­жить зна­чен­ня ви­ра­зу  левая круг­лая скоб­ка 1 минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те .

А) (−3; 0)
Б) [0; 0,5)
В) [0,5; 1)
Г) [1; 2)
Д) [2; 5)
10.  
i

Яке з на­ступ­них твер­джень є вірним?

I. Точка до­ти­ку двох кіл рівновідда­ле­на від центрів цих кіл.

ІІ. У па­ра­ле­ло­грамі є два рівні кути.

ІІІ. Площа пря­мо­кут­но­го три­кут­ни­ка дорівнює до­бут­ку до­в­жин його катетів.

А) лише I та III
Б) лише II та III
В) лише II
Г) I, II та III
Д) лише I та II
11.  
i

Розв'яжіть си­сте­му рівнянь

 си­сте­ма вы­ра­же­ний 3 y плюс 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 13, 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус y=15 . конец си­сте­мы .

Якщцо (x0; y0) — розв'язок цієї си­сте­ми, To x_0 плюс y_0?

А) −4
Б) −3
В) 1
Г) 5
Д) 15
12.  
i

Функція F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =10x в сте­пе­ни 5 минус 4 є первісною функції f(х). Укажіть функцію G(х), яка також є первісною функції f(х).

А) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =10x в сте­пе­ни 5 плюс 7
Б) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2x в сте­пе­ни 6 минус 4x
В) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =50x в сте­пе­ни 6
Г) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =50x в сте­пе­ни 4
Д) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в сте­пе­ни 5 минус 4
13.  
i

Розв’яжіть си­сте­му нерівно­стей:  си­сте­ма вы­ра­же­ний 2x в квад­ра­те минус 7x плюс 5 мень­ше или равно 0,2 минус x боль­ше 0. конец си­сте­мы .

А)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 1 пра­вая квад­рат­ная скоб­ка
Б)  левая круг­лая скоб­ка 2; 2,5 пра­вая квад­рат­ная скоб­ка
В)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2,5 пра­вая квад­рат­ная скоб­ка
Г)  левая квад­рат­ная скоб­ка 1; 2 пра­вая круг­лая скоб­ка
Д)  левая квад­рат­ная скоб­ка 1; 2,5 пра­вая квад­рат­ная скоб­ка
14.  
i

Спростiть вираз  левая круг­лая скоб­ка 1 плюс тан­генс в квад­ра­те альфа пра­вая круг­лая скоб­ка синус в квад­ра­те альфа .

А)  дробь: чис­ли­тель: 1, зна­ме­на­тель: тан­генс в квад­ра­те альфа конец дроби
Б) 1
В)  ко­си­нус в квад­ра­те альфа синус в квад­ра­те альфа
Г)  ко­си­нус в квад­ра­те альфа
Д)  тан­генс в квад­ра­те альфа
15.  
i

Пе­ри­метр ос­но­ви пра­виль­ної три­кут­ної приз­ми дорівнює 12 см, а пе­ри­метр її бічної грані — 20 см. Визна­чте площу бічної по­верхні приз­ми.

А) 24 см2
Б) 60 см2
В) 72 см2
Г) 84 см2
Д) 96 см2
16.  
i

На крес­ленні ку­то­вої шафи (вид звер­ху) зоб­ра­же­но рівні пря­мо­кут­ни­ки ABCD i KMEF та п'яти­кут­ник EMOAD (див. ри­су­нок). Визна­чте до­в­жи­ну відрізка ED, якщо O K=O B=1,2 м, K M=A B=0,5 м i K F=0,3 м. Укажіть відповідь, най­б­лиж­чу до точної.

А) 0,5 м
Б) 0,55 м
В) 0,65 м
Г) 0,6 м
Д) 0,7 м
17.  
i

Уста­новіть відповідність між графіком (1−3) функції, визна­че­ної на проміжку [−4; 4], та її вла­стивістю (А−Д).

Графік функції

1.

2.

3.

Гра­дус­на мiра впи­са­но­го кута ACB

А    функція є не­пар­ною

Б    най­мен­ше зна­чен­ня функції на проміжку [1; 3] дорівнює 2

В   функція є пар­ною

Г    графік функції не має спільних точок із графіком рівнян­ня  левая круг­лая скоб­ка х минус 3 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка у минус 4 пра­вая круг­лая скоб­ка в квад­ра­те = 4

Д    графік функції тричі пе­ре­ти­нає пряму у = 1

А
Б
В
Г
Д

1

2

3
18.  
i

Увідповідніть вираз (1−3) із його зна­чен­ням (А−Д), якщо x = ко­рень из 5 минус 1.

Вираз

1.   |x минус ко­рень из 5 |

2.    левая круг­лая скоб­ка ко­рень из 5 плюс 1 пра­вая круг­лая скоб­ка x

3.   x в квад­ра­те плюс 2x плюс 1

Зна­чен­ня ви­ра­зу

А −1

Б    1

В    4

Г    5

Д    6

А
Б
В
Г
Д

1

2

3
19.  
i

На ри­сун­ку зоб­ра­же­но коло із цен­тром у точці O. Хорди AB і АС рівні. AK — діаметр. PM — до­тич­на до кола, про­ве­де­на в точці C,  \angle BAC=80 гра­ду­сов. До кож­но­го по­чат­ку ре­чен­ня (1—4) доберіть його закінчен­ня (А—Д) так, шоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Гра­дус­на міра гула OCM дорівнює

2.    Гра­дус­на міра кута ACP дорівнює

3.    Гра­дус­на міра меншої дуги AB дорівнює

4.    Гра­дус­на міра меншої дуги KC дорівнює

Закінчен­ня ре­чен­ня

А    50°

Б    80°

В    90°

Г    100°

Д    120°

А
Б
В
Г
Д

1

2

3

4
20.  
i

На ри­сун­ку зоб­ра­же­но куб ABCDA1B1C1D1. До кож­но­го по­чат­ку ре­чен­ня (1—4) доберіть його закінчен­ня (А—Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

 

По­ча­ток ре­чен­ня

1.    Пряма CB

2.    Пряма CD1

3.    Пряма AC

4.    Пряма A1B

Закінчен­ня ре­чен­ня

А    па­ра­лель­на пло­щині AA1B1B

Б    пер­пен­ди­ку­ляр­на до пло­щи­ни AA1B1B

В    на­ле­жить пло­щині AA1B1B

Г    має з пло­щи­ною AA1B1B

Д    утво­рює з пло­щи­ною AA1B1B кут 45°

А
Б
В
Г
Д

1

2

3

4
21.  
i

На ви­ставці пред­став­ле­но лише два види ми­сте­ць­ких робіт: кар­ти­ни та скульп­ту­ри, при­чо­му кількість скульп­тур у 4 рази менша за кількість кар­тин.

1. Скільки відсотків ста­но­вить кількість кар­тин від за­галь­ної кількості робіт на ви­ставці?

2. На скільки відсотків кількість кар­тин більша за кількість скульп­тур?

22.  
i

На ри­сун­ку зоб­ра­же­но ромб ABCD та коло, по­бу­до­ва­не на меншій діаго­налі BD як на діаметрі. До­в­жи­на кола дорівнює 12 Пи . Це коло ділить діаго­наль AC на три відрізки AK, KM та MC, до­в­жи­ни яких відно­ся­ть­ся як 1 : 6 : 1.

1. Об­числiть до­в­жи­ну дiфго­налi BD.

2. Визна­чте площу ромба ABCD.

23.  
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве задан век­тор \overrightarrowAB левая круг­лая скоб­ка 2;1;2 пра­вая круг­лая скоб­ка с на­ча­лом в точке A(−1; −2; 3).

1.  Най­ди­те абс­цис­су точки B.

2.  Вы­чис­ли­те мо­дуль век­то­ра \vecd = 2 \overrightarrowAB минус 2 \overrightarrowBA.

24.  
i

Гео­мет­рич­на про­гресія за­да­на умо­вою  b_n =160 умно­жить на 3 в сте­пе­ни n .

1.  Най­ди­те сумму пер­во­го члена этой про­грес­сии.

2.  Знайдіть суму пер­ших її 4 членів.

25.  
i

Біатлоніст п'ять разів стріляє по мішенях. Імовірність влу­чен­ня в ціль при од­но­му пострілі дорівнює 0,8. Знайдіть ймовірність того, що біатлоніст перші три рази по­тра­пив у мішені, а останні два про­мах­нув­ся. Ре­зуль­тат округліть до сотих.

26.  
i

Андрій у понеділок, вівто­рок та п’ят­ни­цю вит­ра­чав по 16 грн на день, у се­ре­ду й чет­вер — по 11 грн на день, у су­б­о­ту — 35 грн, а в неділю гро­шей не вит­ра­чав.

Скільки гри­вень вит­ра­чав Андрій у се­ред­ньо­му на день цього тижня?

27.  
i

Об­числіть дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 1 конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец дроби .

28.  
i

Розв'яжіть рівнян­ня x в сте­пе­ни 6 = левая круг­лая скоб­ка 6x минус 5 пра­вая круг­лая скоб­ка в кубе . У відповідь запишіть суму всіх його дійсних коренів.

29.  
i

Олег пише смс-повідом­лен­ня з трьох ре­чень. У кінці кож­но­го з них він прикріпить один із п’ят­на­дця­ти ве­се­лих смай­ликів. Скільки всьо­го є спо­собів ви­бо­ру таких смай­ликів для прикріплен­ня, якщо всі смай­ли­ки в повідом­ленні мають бути різними?

x y
−1
0
1

За­да­но функцію y= левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка .

1. Для на­ве­де­них у таб­лиці зна­чень ар­гу­ментів х визна­чте відповідні їм зна­чен­ня (див. таб­ли­цю).

2. Визна­чте та запишіть ко­ор­ди­на­ти точок пе­ре­ти­ну графіка y= левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка з віссю x .

3. Знайдіть похідну f' функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка . Визна­чте нулі функції f '.

4. Визна­чте проміжки зрос­тан­ня та спа­дан­ня, точки екс­тре­му­му функції f .

5. По­бу­дуй­те ескіз графіка функції f .

6. Знайдіть площу фігури, розта­шо­ва­ної в третій ко­ор­ди­натній чверті та об­ме­же­ною графіком функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка і пря­мою y=x минус 2.

31.  
i

Апо­фе­ма пра­виль­ної три­кут­ної піраміди дорівнює 5. Бічні ребра на­хи­лені до ос­но­ви під кутом α.

а) Зоб­разіть на ма­люн­ку цю піраміду та кут α.

б) Знайдіть площу бічної по­верхні піраміди.

в) Знайдіть об'єм піраміди.

32.  
i

Відповідно до умови за­в­дан­ня 31 (№ 3506) Апо­фе­ма пра­виль­ної три­кут­ної піраміди дорівнює 3. Бічні ребра на­хи­лені до ос­но­ви під кутом α.

а) Зоб­разіть на ма­люн­ку цю піраміду та по­бу­дуй­те дво­гран­ний кут при бо­ко­во­му ребрі.

б) Знайдіть цей кут.

33.  
i

Доведіть то­тожність дробь: чис­ли­тель: ко­си­нус x минус ко­си­нус 2x плюс ко­си­нус 3x, зна­ме­на­тель: ко­си­нус 2x конец дроби =2 ко­си­нус x минус 1

34.  
i

За­да­но рівнян­ня левая круг­лая скоб­ка x в квад­ра­те плюс ко­рень из: на­ча­ло ар­гу­мен­та: ax конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те = левая круг­лая скоб­ка 2x плюс 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: ax конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те , де x - Змінна; a – па­ра­метр.

1. Розв'яжіть рівнян­ня 2x плюс 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та =0.

2. Знайдіть усі зна­чен­ня a , при кож­но­му з яких рівнян­ня має єдиний корінь на відрізку [−1; 1].