Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
СКЛАДУ ЗНО — математика
Відповідність з цифрами
1.  
i

Уста­новіть відповідність між твер­джен­ням про дріб (1−4) та дро­бом (А−Д), для якого це твер­джен­ня є пра­виль­ним.

Твер­джен­ня про дріб

1.    є ско­рот­ним

2.    є не­пра­виль­ним

3.    мен­ший за 0,5

4.    є обер­не­ним до дробу  целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 5

Дріб

А     дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби

Б     дробь: чис­ли­тель: 13, зна­ме­на­тель: 27 конец дроби

В     дробь: чис­ли­тель: 41, зна­ме­на­тель: 10 конец дроби

Г     дробь: чис­ли­тель: 7, зна­ме­на­тель: 10 конец дроби

Д     дробь: чис­ли­тель: 34, зна­ме­на­тель: 51 конец дроби

А
Б
В
Г
Д

1

2

3

4
2.  
i

Уста­новіть відповідність між за­пи­тан­ням (1−4) та пра­виль­ною відповіддю на нього (А−Д).

За­пи­тан­ня

1.    Яке число є квад­ра­том на­ту­раль­но­го числа?

2.    Яке число є про­стим?

3.    Яке число є дільни­ком 8?

4.    Яке число крат­не 7?

Відповідь на за­пи­тан­ня

А    8

Б    16

В    17

Г    27

Д    56

А
Б
В
Г
Д

1

2

3

4
3.  
i

Уста­новіть відповідність між чис­ло­вим ви­ра­зом (1−4) та проміжком (А−Д), якому на­ле­жить його зна­чен­ня.

 

Вираз

1.    ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та

2.   8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка

3.    ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 10

4.   \left| дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби минус 2|

Проміжок

А  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка

Б [−3; 0)

В [0; 1)

Г [1; 3)

Д  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3

4
4.  
i

Уста­новіть відповідність між чис­ло­вим ви­ра­зом (1—4) та його зна­чен­ням (А—Д).

 

По­ча­ток ре­чен­ня

1.   16 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка

2.    левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка

3.    левая круг­лая скоб­ка 2 в кубе пра­вая круг­лая скоб­ка в квад­ра­те

4.   2 в сте­пе­ни левая круг­лая скоб­ка 3,5 пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка

Зна­чен­ня чис­ло­во­го ви­ра­зу

А    4

Б    8

В    16

Г    32

Д    64

А
Б
В
Г
Д

1

2

3

4
5.  
i

Уста­новіть відповідність між три­го­но­мет­рич­ним ви­ра­зом (1−4) та його зна­чен­ням (А−Д).

Три­го­но­мет­рич­ний вираз

1.    ко­си­нус в квад­ра­те 15 гра­ду­сов плюс синус в квад­ра­те 15 гра­ду­сов

2.   4 синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 синус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби

3.   2 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби

4.    дробь: чис­ли­тель: синус дробь: чис­ли­тель: Пи }3, зна­ме­на­тель: ко­си­нус дробь: чис­ли­тель: {, зна­ме­на­тель: конец дроби pi, зна­ме­на­тель: 3 конец дроби конец дроби

Зна­че­ния три­го­но­мет­рич­но­го ви­ра­зу

А    ко­рень из 3

Б    дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 3 конец дроби

В    дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби

Г    1

Д    0

А
Б
В
Г
Д

1

2

3

4
6.  
i

До кож­но­го по­чат­ку ре­чен­ня (1−4) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Сума чисел 32 і 18

2.    До­бу­ток чисел 32 і 18

3.    Част­ка чисел 32 і 18

4.    Різниця чисел 32 і 18

Закінчен­ня ре­чен­ня

А є квад­ра­том на­ту­раль­но­го числа

Б є чис­лом, що ділить­ся наділо на 10

В є най­мен­шим спільним крат­ним чисел 32 і 18

Г є раціональ­ним чис­лом, яке не є цілим

Д є дільни­ком числа 84

А
Б
В
Г
Д

1

2

3

4
7.  
i

Уста­новіть відповідність між твер­джен­ням про дріб (1−4) та дро­бом, для якого це твер­джен­ня є пра­виль­ним (А−Д).

Твер­джен­ня про дріб

1.    є пра­виль­ним

2.    на­ле­жить проміжку (1; 1,5)

3.    дорівнює зна­чен­ню ви­ра­зу 7 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 1,6 пра­вая круг­лая скоб­ка

4    є сумою чисел  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби конец ар­гу­мен­та та  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 25, зна­ме­на­тель: 9 конец дроби конец ар­гу­мен­та

Дріб

А    дробь: чис­ли­тель: 13, зна­ме­на­тель: 6 конец дроби

Б    дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби

В    дробь: чис­ли­тель: 13, зна­ме­на­тель: 5 конец дроби

Г    дробь: чис­ли­тель: 8, зна­ме­на­тель: 5 конец дроби

Д    дробь: чис­ли­тель: 6, зна­ме­на­тель: 5 конец дроби

А
Б
В
Г
Д

1

2

3

4
8.  
i

Уста­новіть відповідність між твер­джен­ням про дріб (1−4) та дро­бом, для якого це твер­джен­ня є пра­виль­ним (А-Д).

Твер­джен­ня про дріб

1.    є сумою чисел  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 25, зна­ме­на­тель: 4 конец дроби конец ар­гу­мен­та та  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 216 конец ар­гу­мен­та

2.    дорівнює зна­чен­ню ви­ра­зу 3 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 2,75 пра­вая круг­лая скоб­ка

3.    на­ле­жить проміжку (2; 2,5)

4    є пра­виль­ним

Дріб

А    дробь: чис­ли­тель: 11, зна­ме­на­тель: 4 конец дроби

Б    дробь: чис­ли­тель: 20, зна­ме­на­тель: 7 конец дроби

В    дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби

Г    дробь: чис­ли­тель: 17, зна­ме­на­тель: 2 конец дроби

Д    дробь: чис­ли­тель: 11, зна­ме­на­тель: 5 конец дроби

А
Б
В
Г
Д

1

2

3

4
9.  
i

Уста­новіть відповідність між чис­ло­вим ви­ра­зом (1—4) та його зна­чен­ням (А—Д).

 

По­ча­ток ре­чен­ня

1.   2 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка :2 в сте­пе­ни 0

2.    минус 2 в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на 8

3.   20 в сте­пе­ни 4 : левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка в сте­пе­ни 4

4.   2 в кубе : 16 умно­жить на 32

Зна­чен­ня чис­ло­во­го ви­ра­зу

А    256

Б    −256

В     минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

Г     дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

Д    32

А
Б
В
Г
Д

1

2

3

4
10.  
i

Уста­новіть відповідність між чис­ло­вим ви­ра­зом (1—4) та його зна­чен­ням (А—Д).

 

По­ча­ток ре­чен­ня

1.   3 в сте­пе­ни 0 :3 в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка

2.    минус 3 в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 27 конец дроби

3.   7 в сте­пе­ни 4 : левая круг­лая скоб­ка минус 21 пра­вая круг­лая скоб­ка в сте­пе­ни 4

4.   3 в кубе : 3 в сте­пе­ни 4 умно­жить на 3 в сте­пе­ни 5

Зна­чен­ня чис­ло­во­го ви­ра­зу

А    243

Б    −81

В     дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби

Г     минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби

Д    81

А
Б
В
Г
Д

1

2

3

4
11.  
i

Уста­новіть відповідність між три­го­но­мет­рич­ним ви­ра­зом (1−4) та його зна­чен­ням (А−Д).

Три­го­но­мет­рич­ний вираз

1.   5 синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 5 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби

2.   8 синус в квад­ра­те дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус 4

3.   2 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби

Зна­че­ния три­го­но­мет­рич­но­го ви­ра­зу

А   1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

Б   5

В    минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

Г    2,5

Д    4 плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

А
Б
В
Г
Д

1

2

3
12.  
i

Уста­новіть відповідність між три­го­но­мет­рич­ним ви­ра­зом (1−4) та його зна­чен­ням (А−Д).

Три­го­но­мет­рич­ний вираз

1.   6 синус в квад­ра­те дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 8 конец дроби плюс 6 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 8 конец дроби

2.   12 синус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби ко­си­нус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби

3.   6 синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус 2 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби

Зна­че­ния три­го­но­мет­рич­но­го ви­ра­зу

А    минус дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

Б   6

В   4 плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

Г    5

Д    3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

А
Б
В
Г
Д

1

2

3
13.  
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

1\left| минус 1,6| плюс 2

2 дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 24 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из 3 конец дроби

32 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби

Промiжок

А левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая круг­лая скоб­ка

Б левая квад­рат­ная скоб­ка 0;1 пра­вая круг­лая скоб­ка

В левая квад­рат­ная скоб­ка 1;2 пра­вая круг­лая скоб­ка

Г левая квад­рат­ная скоб­ка 2;3 пра­вая круг­лая скоб­ка

Д левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3
14.  
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

1 ко­рень из 7 плюс 1

2 ло­га­рифм по ос­но­ва­нию 2 8 плюс ко­рень из 2

3 дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­рень из 3 конец дроби плюс 3

Промiжок

А левая круг­лая скоб­ка 4; 5 пра­вая круг­лая скоб­ка

Б левая круг­лая скоб­ка 1; 2 пра­вая квад­рат­ная скоб­ка

В левая круг­лая скоб­ка 2; 3 пра­вая круг­лая скоб­ка

Г левая круг­лая скоб­ка 3; 4 пра­вая круг­лая скоб­ка

Д левая квад­рат­ная скоб­ка 5; 6 пра­вая квад­рат­ная скоб­ка

А
Б
В
Г
Д

1

2

3
15.  
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

1 минус 3,6 плюс ло­га­рифм по ос­но­ва­нию 2 16

2 ко­рень из 8 минус 1

3 дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию 3 81 минус | минус 4|, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 26 конец ар­гу­мен­та конец дроби

Промiжок

А левая круг­лая скоб­ка 0; 1 пра­вая круг­лая скоб­ка

Б левая круг­лая скоб­ка 1; 2 пра­вая квад­рат­ная скоб­ка

В левая круг­лая скоб­ка 2; 3 пра­вая круг­лая скоб­ка

Г левая круг­лая скоб­ка минус 1; 0 пра­вая квад­рат­ная скоб­ка

Д левая квад­рат­ная скоб­ка 3; 4 пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3
16.  
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

13 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 4 16 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 3 729

2 дробь: чис­ли­тель: ко­рень из 6 плюс 5, зна­ме­на­тель: 3 конец дроби

3 дробь: чис­ли­тель: 2 минус ко­рень из 2 , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 4 2 конец дроби

Промiжок

А левая круг­лая скоб­ка 1; 2 пра­вая квад­рат­ная скоб­ка

Б левая круг­лая скоб­ка 2; 3 пра­вая круг­лая скоб­ка

В левая квад­рат­ная скоб­ка 3; 4 пра­вая круг­лая скоб­ка

Г левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка

Д левая круг­лая скоб­ка 4; 5 пра­вая квад­рат­ная скоб­ка

А
Б
В
Г
Д

1

2

3
17.  
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

1 синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби

23 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби

3 синус Пи плюс ко­си­нус Пи

Промiжок

А левая круг­лая скоб­ка минус 2; минус 1 пра­вая круг­лая скоб­ка

Б левая квад­рат­ная скоб­ка минус 1; 0 пра­вая круг­лая скоб­ка

В левая круг­лая скоб­ка 2; 3 пра­вая круг­лая скоб­ка

Г левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка

Д левая круг­лая скоб­ка 1; 2 пра­вая квад­рат­ная скоб­ка

А
Б
В
Г
Д

1

2

3
18.  
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

1| минус 0,2| плюс 1

2 синус в квад­ра­те дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби

3 дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби конец дроби

Промiжок

А левая круг­лая скоб­ка 0; 1 пра­вая круг­лая скоб­ка

Б левая круг­лая скоб­ка 4; 5 пра­вая круг­лая скоб­ка

В левая квад­рат­ная скоб­ка 1; 2 пра­вая круг­лая скоб­ка

Г левая круг­лая скоб­ка 2; 3 пра­вая круг­лая скоб­ка

Д левая квад­рат­ная скоб­ка 3; 4 пра­вая квад­рат­ная скоб­ка

А
Б
В
Г
Д

1

2

3