Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
СКЛАДУ ЗНО — математика
Похідні
1.  
i

Укажіть рівнян­ня прямої, яка може бути до­тич­ною до графіка функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка у точці з абс­ци­сою x_0=2, якщо f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка = минус 3.

А) y= минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x плюс 1
Б) y=3x минус 2
В) y=2x плюс 3
Г) y= дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x минус 1
Д) y= минус 3x плюс 2
2.  
i

Якщо y= левая круг­лая скоб­ка 4 x минус 1 пра­вая круг­лая скоб­ка в кубе , то похідна від y дорівнює?

А) 3 левая круг­лая скоб­ка 4x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те
Б) 3 левая круг­лая скоб­ка 4x минус 1 пра­вая круг­лая скоб­ка
В)  дробь: чис­ли­тель: левая круг­лая скоб­ка 4x минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни 4 , зна­ме­на­тель: 16 конец дроби
Г) 12 левая круг­лая скоб­ка 4x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те
Д)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби левая круг­лая скоб­ка 4x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те
3.  
i

Об­числіть зна­чен­ня похідної функції y= ко­рень из: на­ча­ло ар­гу­мен­та: 19 минус 5x конец ар­гу­мен­та у точцi x_0=3.

4.  
i

Матеріальна точка рухається пря­молінійно за за­ко­ном s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =4t в квад­ра­те плюс 9t плюс 8 (шлях s вимірюється в мет­рах, час t — у се­кун­дах). Визна­чте швидкість (у м/с) цієї точки в мо­мент часу t = 4 с.

5.  
i

Укажіть похідну функції y= синус x минус ко­си­нус x плюс 1.

А) y'= ко­си­нус x плюс синус x плюс 1
Б) y'= ко­си­нус x минус синус x
В) y'= минус ко­си­нус x минус синус x плюс x
Г) y'= минус ко­си­нус x минус синус x
Д) y'= ко­си­нус x плюс синус x
6.  
i

До­тич­на. про­ве­де­на до графіка функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка у точці М (5; −9). па­ра­лель­на осі абс­цис. Об­числіть зна­чен­ня ви­ра­зу 3 умно­жить на f' левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка плюс 10 умно­жить на f левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка .

7.  
i

Укажіть похідну функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x левая круг­лая скоб­ка x в кубе плюс 1 пра­вая круг­лая скоб­ка .

А) f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4x в кубе плюс 1
Б) f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4x в кубе
В) f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в квад­ра­те
Г) f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в квад­ра­те плюс 1
Д) f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в сте­пе­ни 5 , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 2 конец дроби
8.  
i

Укажіть похідну функції y= минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 6 конец дроби x в сте­пе­ни 6 плюс 5x в сте­пе­ни 4 минус 14.

А) y'= минус дробь: чис­ли­тель: x в сте­пе­ни 7 , зна­ме­на­тель: 6 конец дроби плюс x в сте­пе­ни 5 минус 14x
Б) y'= минус 7x в сте­пе­ни 5 плюс 20x в кубе минус 14
В) y'=7x в сте­пе­ни 5 плюс 20x в кубе
Г) y'= минус 7x в сте­пе­ни 7 плюс 25x в сте­пе­ни 5
Д) y'= минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 36 конец дроби x в сте­пе­ни 5 плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в кубе
9.  
i

Функція F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2x в кубе минус 1є первісною функції f(x). Укажіть функцію f(x).

А) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =6x в квад­ра­те минус 1
Б) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =6x минус 1
В) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4x в квад­ра­те
Г) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в сте­пе­ни 4 , зна­ме­на­тель: 2 конец дроби минус x
Д) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =6x в квад­ра­те
10.  
i

Укажіть похідну функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2x минус 3, зна­ме­на­тель: x конец дроби .

А) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби x в квад­ра­те
Б) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби x
В) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 4x минус 3, зна­ме­на­тель: x в квад­ра­те конец дроби
Г) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби x в квад­ра­те
Д) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 2
11.  
i

Укажіть похідну функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 4x в кубе плюс тан­генс x.

А) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 12x в квад­ра­те плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби тан­генс x
Б) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 12x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби тан­генс x
В) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = x в сте­пе­ни 4 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби ко­си­нус в квад­ра­те x
Г) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 12x в квад­ра­те плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби ко­си­нус в квад­ра­те x
Д) f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = x в сте­пе­ни 4 минус дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби тан­генс x
12.  
i

Знайдіть похідну функції y = 2x плюс ко­си­нус x.

А) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 2 минус синус x
Б) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 2 плюс ко­си­нус x
В) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = x в квад­ра­те минус синус x
Г) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 2 плюс синус x
Д) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = x в квад­ра­те плюс синус x
13.  
i

На ма­люн­ку зоб­ра­же­но графік функції y = F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка — однією з пер­шо­ряд­них функції f(x), визна­че­ної на інтер­валі (−3; 5). Знайдіть кількість розв'язків рівнян­ня f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0 на відрізку [−2; 4].

А) 6
Б) 7
В) 8
Г) 9
Д) 10
14.  
i

Знайдіть похідну функції y = 2x плюс ко­си­нус x.

А) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 2 минус синус x
Б) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 2 плюс ко­си­нус x
В) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = x в квад­ра­те минус синус x
Г) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = 2 плюс синус x
Д) y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка = x в квад­ра­те плюс синус x
15.  
i

Знайдіть похідну функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x плюс 2 плюс синус x.

А) 3 плюс ко­си­нус x
Б) 1 минус ко­си­нус x
В) 1 плюс ко­си­нус x
Г) 1 плюс синус x
Д) 2 плюс ко­си­нус x
16.  
i

Знайдіть похідну функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x синус x плюс 3x в квад­ра­те .

А) x ко­си­нус x плюс синус x плюс 6x
Б) x синус x плюс ко­си­нус x плюс 6x
В)  синус x плюс ко­си­нус x
Г)  минус x ко­си­нус x плюс синус x плюс 6x
Д)  минус ко­си­нус x плюс 6x
17.  
i

Знайдіть похідну функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: 2x плюс x в кубе конец дроби .

А)  дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те плюс 2, зна­ме­на­тель: левая круг­лая скоб­ка 2x плюс x в кубе пра­вая круг­лая скоб­ка в квад­ра­те конец дроби
Б)  дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те плюс 2, зна­ме­на­тель: 4x плюс 2x в кубе конец дроби
В)  дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те , зна­ме­на­тель: левая круг­лая скоб­ка 2x плюс x в кубе пра­вая круг­лая скоб­ка в квад­ра­те конец дроби
Г)  минус дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те плюс 2, зна­ме­на­тель: левая круг­лая скоб­ка 2x плюс x в кубе пра­вая круг­лая скоб­ка в квад­ра­те конец дроби
Д)  дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те плюс 2, зна­ме­на­тель: 2x плюс x в кубе конец дроби
18.  
i

Знайдіть похідну функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x\ctg x.

А) \ctg x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: синус в квад­ра­те x конец дроби
Б) \ctg x минус дробь: чис­ли­тель: x, зна­ме­на­тель: ко­си­нус в квад­ра­те x конец дроби
В) \ctg x минус дробь: чис­ли­тель: x, зна­ме­на­тель: синус в квад­ра­те x конец дроби
Г) \ctg x плюс дробь: чис­ли­тель: x, зна­ме­на­тель: синус в квад­ра­те x конец дроби
Д) \ctg x плюс дробь: чис­ли­тель: x, зна­ме­на­тель: ко­си­нус в квад­ра­те x конец дроби