Задания
Версия для печати и копирования в MS Word
Тип 20 № 1180
i

Уста­новіть відповідність між вимірами ко­ну­са (1−3) та пра­виль­ним щодо нього твер­джен­ням (А−Д).

Виміри ко­ну­са

1.    радіус ос­но­ви дорівнює 6, ви­со­та — 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

2.    радіус ос­но­ви дорівнює 3, ви­со­та — 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

3.    радіус ос­но­ви дорівнює 4, ви­со­та — 3

Твер­джен­ня щодо ко­ну­са

А    конус утво­ре­но обер­тан­ням рівно­сто­рон­ньо­го три­кут­ни­ка зі сто­ро­ною 6 нав­ко­ло його ви­со­ти

Б    діаметр ос­но­ви ко­ну­са дорівнює 12

В    твірна ко­ну­са дорівнює 12

Г    площа бічної по­верхні ко­ну­са дорівнює 20π

Д    Об'єм ко­ну­са дорiнює 108 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи

А
Б
В
Г
Д

1

2

3
Спрятать решение

Ре­ше­ние.

1. Если ра­ди­ус ос­но­ва­ния ко­ну­са равен 6, то диа­метр ос­но­ва­ния ко­ну­са равен 12. Таким об­ра­зом, 1 — Б.

2. Если ра­ди­ус равен 3, най­дем длину AO: AO=H=3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та . В пря­мо­уголь­ном тре­уголь­ни­ке AOB по тео­ре­ме Пи­фа­го­ра:

A B в квад­ра­те =BO в квад­ра­те плюс AO в квад­ра­те =9 плюс 27=36,

от­сю­да  AB=AC=BC=6. Зна­чит, 2 — А.

3. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 4, вы­со­та ко­ну­са равна 3. Для на­хож­де­ния пло­ща­ди бо­ко­вой по­верх­но­сти ис­поль­зу­ем фор­му­лу S_бок.= Пи R l, где l=A B= ко­рень из: на­ча­ло ар­гу­мен­та: 3 в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та плюс 4 в квад­ра­те пра­вая круг­лая скоб­ка =5. Имеем: S_бок.= Пи умно­жить на 4 умно­жить на 5=20 Пи . Итак, 3 — Г.

 

Ответ: 1 — Б, 2 — А, 3 — Г.

Источник: ЗНО 2020 року з ма­те­ма­ти­ки — до­дат­ко­ва сесія
Методы геометрии: Тео­ре­ма Пи­фа­го­ра
Классификатор стереометрии: 3\.16\. Конус, 4\.3\. Пло­щадь по­верх­но­сти круг­лых тел, 4\.4\. Объ­е­мы круг­лых тел