Задания
Версия для печати и копирования в MS Word
Тип 12 № 1237
i

У пря­мо­кутній си­стемі ко­ор­ди­нат на пло­щині зоб­ра­же­но план пар­ко­вої зони, що має форму фігури, об­ме­же­ної графіками функцій y = f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка і у = 3 (див. ри­су­нок). Укажіть фор­му­лу для об­чис­лен­ня площі S цієї фігури.

А) S= при­над­ле­жит t_ минус 1 в кубе левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка d x
Б) S= при­над­ле­жит t_ минус 1 в кубе левая круг­лая скоб­ка 3 минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка d x
В) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 3 пра­вая круг­лая скоб­ка d x
Г) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка d x
Д) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка d x
Спрятать решение

Ре­ше­ние.

Най­дем пло­щадь фи­гу­ры, ис­поль­зуя фор­му­лу Нью­то­на−Лейб­ни­ца, а также гео­мет­ри­че­ский смысл опре­де­лен­но­го ин­те­гра­ла:

 S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка d x.

 

Пра­виль­ный ответ ука­зан под но­ме­ром 5.

Источник: ЗНО 2021 року з ма­те­ма­ти­ки — до­дат­ко­ва сесія
Классификатор алгебры: 15\.10\. При­ме­не­ние ин­те­гра­ла к на­хож­де­нию пло­ща­дей фигур